How the toughness in metallic glasses depends on topological and chemical heterogeneity.
نویسندگان
چکیده
To gain insight into the large toughness variability observed between metallic glasses (MGs), we examine the origin of fracture toughness through bending experiments and molecular dynamics (MD) simulations for two binary MGs: Pd82Si18 and Cu46Zr54 The bending experiments show that Pd82Si18 is considerably tougher than Cu46Zr54, and the higher toughness of Pd82Si18 is attributed to an ability to deform plastically in the absence of crack nucleation through cavitation. The MD simulations study the initial stages of cavitation in both materials and extract the critical factors controlling cavitation. We find that for the tougher Pd82Si18, cavitation is governed by chemical inhomogeneity in addition to topological structures. In contrast, no such chemical correlations are observed in the more brittle Cu46Zr54, where topological low coordination number polyhedra are still observed around the critical cavity. As such, chemical inhomogeneity leads to more difficult cavitation initiation in Pd82Si18 than in Cu46Zr54, leading to a higher toughness. The absence of chemical separation during cavitation initiation in Cu46Zr54 decreases the energy barrier for a cavitation event, leading to lower toughness.
منابع مشابه
Tough Fe-based bulk metallic glasses
The toughness of Fe-based bulk metallic glasses BMGs has been significantly improved via systematic changes in chemistry. Chemistry changes were selected based on their likely effects on critical elastic constants shown to affect plasticity/toughness in various BMGs, in addition to their recently discovered effects on chemical bonding in these Fe-based systems. The fracture energy obtained on n...
متن کاملDesigning Bulk Metallic Glass Matr ix Composites with High Toughness and Tensile Ductility
Metallic glasses have been the subject of intense scientific study since the 1960s, owing to their unique properties such as high strength, large elastic limit, high hardness, and amorphous microstructure. However, bulk metallic glasses have not been used in the high strength structural applications for which they have so much potential, owing to a highly localized failure mechanism that result...
متن کاملOrigin of embrittlement in metallic glasses.
Owing to their glassy nature, metallic glasses demonstrate a toughness that is extremely sensitive to the frozen-in configurational state. This sensitivity gives rise to "annealing embrittlement," which is often severe and in many respects limits the technological advancement of these materials. Here, equilibrium configurations (i.e., "inherent states") of a metallic glass are established aroun...
متن کاملA microscopic continuum model for defect dynamics in metallic glasses
Motivated by results of the topological theory of glasses accounting for geometric frustration, we develop the simplest possible continuum mechanical model of defect dynamics in metallic glasses that accounts for topological, energetic, and kinetic ideas. A geometrical description of ingredients of the structure of metallic glasses using the concept of local order based on Frank-Kasper phases a...
متن کاملFracture Toughness Anomalies: Viewpoint of Topological Constraint Theory
The relationship between composition, structure, and resistance to fracture remains poorly understood. Here, based on molecular dynamics simulations, we report that 1 sodium silicate glasses (NS) and calcium–silicate–hydrates (CSH) feature an anomalous maximum in fracture toughness. In the framework of topological constraint theory, this anomaly is correlated to a flexible-to-rigid transition, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 26 شماره
صفحات -
تاریخ انتشار 2016